There are methods to accurately estimate the variance components, corrected for a number of systematic effects. These variance components can be used to calculate the heritability. Potential issue is that for accurate estimates of the variance components a rather large number of records (animals with observations and pedigree) are required. If you only have a limited number of observations, or you don’t have a good pedigree on of the animals, there is a ‘quick and dirty’ way to get an impression of the size of the heritability: the parent-offspring regression. Parents pass half of their genes on to the offspring. If the trait you are considering is determined by genetics only, you would expect a regression coefficient of 1 if you would plot the average performance of both parents (also called the mid-parent) on the x-axe against the performance of the offspring on the y-axe. If the trait is influenced by the environment to some extent, but also by genetics, then you expect a regression coefficient smaller than 1, but larger than 0. This regression coefficient is an indicator of how much parents and offspring are alike. And the assumption is that the only factor that makes them alike is their common genetic background. In other words: the regression coefficient reflects the heritability. In some situations you will not have observations on both parents, but only on one parent. For example in case of a trait that only comes to expression in either males or females. In that case the regression coefficient does not reflect the complete heritability, but only half of it.
...