Pesten, plagen, biologische bestrijding en bestuivers nemen
licht waar
. Het licht heeft invloed op interne processen, ontwikkeling en gedrag. De invloed van het lichtspectrum op de biologie wordt belangrijker omdat middelen om curatief in te grijpen steeds minder beschikbaar zijn
. Voor het bestrijden van ziekten en plagen in de kas
is het belangrijk om natuurlijke vijanden en antagonisten te introduceren, de vestiging en effectiviteit van
deze biologische bestrijding te stimuleren en om de plantweerbaarheid te vergroten. Met licht kan invloed worden uitgeoefend op ziekten en plagen:
Direct door effecten op de ziekten en plagen (Figuur; route a)
.
Indirect via effecten op natuurlijke vijanden/antagonisten van ziekten en plagen (Figuur; route b)
En de weerbaarheid van het gewas (Figuur; route c).
In deze sectie wordt beschreven wat er bekend is over de invloed van het lichtklimaat op de ziekte- en plaagdruk.
Conceptueel model voor geïntegreerde gewasmanagement
Urgent |
---|
In de natuur worden plagen zowel ‘top-down’ (door biologische bestrijders) als ‘bottom-up’ (door plantweerbaarheid) gereguleerd. Wilde planten hebben vaak een sterkere afweer tegen ziektes en plagen dan gecultiveerde planten. Dit is het gevolg van de trade-off tussen groei en verdediging (Herms and Mattson 1992), waardoor bij de selectie van gewassen voor hogere productiviteit, resistentie tegen ziekten en plagen is afgenomen (Whitehead et al. 2017). Daarnaast kunnen populaties van ziekten en plagen in de natuur minder snel in omvang toenemen door de heterogeniteit van de vegetatie, en zijn er door deze heterogeniteit vaak ook meer gunstige condities voor natuurlijke vijanden dan in monoculturen van gewassen (Andow 1991, Bianchi et al. 2006). |
Plantweerbaarheid
Planten kunnen zich op verschillende manieren verdedigen tegen een aanval van ziekten of plagen. Direct door, chemische of structurele eigenschappen aan te passen. Zo kan bladdikte, -stevigheid en de compositie van het bladoppervlak (aanwezigheid van een waslaag en/of beharing) een effect hebben op de vraat, eileg en/of mobiliteit van plagen en natuurlijke vijanden (Eigenbrode and Espelie 1995, Walling 2000, Eigenbrode 2004), en het infectieproces door plantpathogene schimmels en bacteriën beïnvloeden (Serrano et al. 2014). Bladbeharing werkt hinderend voor de loopactiviteit van de meeste mijten en insecten. Tevens kan het het vraatgedrag beïnvloeden. Haartjes op het blad kunnen stoffen uitscheiden met een afwerende, toxische en/of kleverige werking (Glas et al. 2012). Ook kunnen planten stoffen aanmaken die een remmende werking hebben op plantbelagers, zoals fenolen, terpenen en alkaloïden, en verdedigingseiwitten zoals glucanase en proteinase-remmers (Walling 2000). Een plant kan zich ook op een indirecte manier verdedigen. Door bijvoorbeeld plaag-geïnduceerde geurstoffen te produceren die door natuurlijke vijanden worden gebruikt om hun prooi of gastheer te vinden. Of door nectar te produceren die als aanvullende voedselbron geld voor natuurlijke vijanden (Heil 2008).
De meeste verdedigingseigenchappen van de plant hebben zowel een vast component als een induceerbaar component. De induceerbare component wordt getriggered door biotische en abiotische factoren. Afweerroutes worden geactiveerd na een aanval van een plantbelager. Verschillende factoren, onder andere lichtspectra (Demkura and Ballare 2012, de Bobadilla et al. 2017, Escobar-Bravo et al. 2017), kunnen de plant ‘primen’ om sneller en sterker te reageren op een aanval van een plantbelager (Conrath et al. 2006). Dezelfde factoren kunnen de afweerroutes tot op zekere hoogte ook direct induceren zonder de tussenkomst van een plantbelager. Dit komt omdat een aantal secundaire plantenstoffen zowel een verdedigingsfunctie heeft tegen ziekten en plagen als een functie in de respons op hitte, droogte en UV-licht (e.g. Wink 2003, Stamp 2004). Licht speelt een rol in het beïnvloeden van een heel scala aan defensieve planteneigenschappen (Ballare 2014).
De lichtintensiteit, -samenstelling en daglengte kunnen allemaal invloed uitoefenen op de geïnduceerde plantweerbaarheid. De lichtintensiteit beïnvloed de hoeveelheid suikers die geproduceerd worden. Deze suikers kunnen in het secundair metabolisme worden omgezet in stoffen die plantweerbaarheid verhogen. Maar suikers kunnen ook het voedingsgedrag van plagen stimuleren (Schoonhoven et al., 2006). Een lagere hoeveelheid licht of de complete afwezigheid van licht, leidt in veel gevallen tot verminderde afgave van geïnduceerde geurstoffen. Er zijn verschillende studies die laten zien dat een lage verhouding tussen rood en verrood licht de plant gevoeliger maakt voor ziektes en plagen. Deze verhouding vertelt de plant of deze in competitie is met andere planten voor licht. De "shade avoidance response" (schaduw vermijding) is een adaptatie van de plant om competitie door buurplanten voor te zijn door een investering in versnelde groei. Deze versnelde groei gaat ten koste van de verdediging van de plant. UV-B licht kan deze door lage rood-verrood licht verhouding geïnduceerde schaduw-vermijdingsrespons tegengaan. Escobar-Bravo et al. (2017) veronderstellen dat aanvullend UV-B licht tussen planten een veelbelovend alternatief zou kunnen vormen om gewasbescherming tegen plaaginsecten te verbeteren. Ze stellen ook dat extra blauw licht de UV-B response zou kunnen verhogen doordat er meer suikers beschikbaar komen uit de fotosynthese die gebruikt kunnen worden in de plantweerbaarheid
Urgent |
---|
De verdedigingsmechanismen van de plant beïnvloeden niet alleen de ziekten en plagen zelf, maar ook de natuurlijke vijanden. Indirect, via de kwaliteit en kwantiteit van de prooien/ gastheren (e.g. Kazana et al. 2007). En direct, zo hinderen haren ook het zoekgedrag van natuurlijke vijanden (Bottrell et al. 1998, Kennedy 2003). Vaak maken ook natuurlijke vijanden gebruik van de plant. Verschillende soorten natuurlijke vijanden leggen hun eitjes in het plantenweefsel, een aantal soorten roofwantsen en roofmijten kunnen zich tevens met plantsap voeden (Sanchez et al. 2004, Adar et al. 2015). |
Perceptie van licht
title | Insecten en mijten |
---|
Licht kan de fotoreceptoren van insecten en mijten direct bereiken, als fotonen die worden uitgezonden door een lichtbron, of indirect via reflectie door objecten en/of transmissie door een medium (bladeren, kasdekmateriaal).Insecten en mijten gebruiken visuele informatie voor oriëntatie en navigatie, het lokaliseren van geschikte voedselplanten, prooien en/of het vinden van een voortplantingspartner en het vermijden van predatoren (Prokopy and Owens 1983, Warrant and Nilsson 2006). Tegelijkertijd beïnvloeden lichtcondities fysiologische processen in insecten en mijten; Waaronder de ontwikkelingstijd, overleving en vruchtbaarheid, en hebben ze een regulerende werking op de biologische klok en het optreden van diapauze. Verder beïnvloedt licht het gedrag van insecten en mijten; vlieg- en/of loopactiviteit, vraatactiviteit, paargedrag en eileg. Verschillende aspecten van licht, zoals de samenstelling van het lichtspectrum, de lichtintensiteit, de daglengte, de timing van lichtcondities en de positionering van de lichtbron hebben elk een unieke invloed op het gedrag en de fysiologie van insecten en mijten.
Licht kan worden waargenomen via fotoreceptorcellen in samengestelde ogen en simpele ogen (stemmata & ocelli) en via fotoreceptorcellen die buiten een netvlies liggen. Het levensstadium is van belang in de perceptie. Volwassen insecten en nimfen van hemimetabole insecten (onvoledige gedaanteverwisseling) hebben zowel simpele ogen als samengestelde ogen. Larven van holometabole insecten (volledige gedaanteverwisseling) en mijten hebben alleen simpele ogen.
Urgent | |||||
---|---|---|---|---|---|
|
De meeste bestudeerde insecten hebben drie verschillende typen fotoreceptoren, één die gevoelig is voor UV licht, met een piekgevoeligheid (λmax) bij 350 nm, één die gevoelig is voor groen licht (met λmax bij 540 nm) en één met een λmax bij 440 nm (blauw licht) (Kelber 2001, Warrant and Nilsson 2006), al bestaan voor dit patroon wel afwijkingen. Er is slechts beperkte informatie over de spectrale gevoeligheid van de fotoreceptoren van soorten die plagen vormen in kassen en hun natuurlijke vijanden. Spintmijt (Tetranynchus urticae) (Naegele et al. 1966), kaswittevlieg (Traleurodes vaporariorum), een sluipwesp van de kaswittevlieg (Encarsia formosa) (Mellor et al. 1997), en de Californische trips (Frankliniella occidentalis) (Matteson et al. 1992) hebben 2 typen fotoreceptoren, met λmax in het UV en groene lichtspectrum. De groene perzikluis, Myzus persicae (Kirchner et al. 2005), en de commercieel gebruikte bestuiver Bombus terrestris (Briscoe and Chittka 2001, Skorupski et al. 2007) hebben alle drie de bovenbeschreven fotoreceptoren.
title | Schimmels en bacteriën |
---|
Benadering en licht voor ziekte en plaagbestrijding
Benadering voor belichtingstrategieën voor ziekte en plaagbestrijding
Er zijn verschillende directe en indirecte manieren waarop de bestrijding van plaaginsecten en - mijten kan worden verbeterd door de lichtomstandigheden te veranderen. Bij aanpassen van de lichtcondities in de kas moet altijd een goede afweging gemaakt worden tussen de voordelen voor biologische bestrijding enerzijds en de gevolgen voor gewasproductie en energieverbruik anderzijds.
Uitvouwen | ||
---|---|---|
| ||
Directe effecten licht op plagen
Indirecte effecten op plagen
Benaderingen voor manipulatie licht voor bestrijding van plantpathogene schimmels en bacteriën
|
Dit onderwerp wordt verder belicht in de volgende secties:
Informatie |
---|
Rapporten & Artikelen |